Jacobi–Trudy Formula for Generalized Schur Polynomials
نویسندگان
چکیده
منابع مشابه
Pieri’s Formula for Generalized Schur Polynomials
Young’s lattice, the lattice of all Young diagrams, has the Robinson-Schensted-Knuth correspondence, the correspondence between certain matrices and pairs of semi-standard Young tableaux with the same shape. Fomin introduced generalized Schur operators to generalize the Robinson-Schensted-Knuth correspondence. In this sense, generalized Schur operators are generalizations of semi-standard Young...
متن کاملA Determinantal Formula for Supersymmetric Schur Polynomials
We derive a new formula for the supersymmetric Schur polynomial sλ(x/y). The origin of this formula goes back to representation theory of the Lie superalgebra gl(m/n). In particular, we show how a character formula due to Kac and Wakimoto can be applied to covariant representations, leading to a new expression for sλ(x/y). This new expression gives rise to a determinantal formula for sλ(x/y). I...
متن کاملJacobi–trudy Formula for Generalised Schur Polynomials
X iv :0 90 5. 25 57 v2 [ m at h. R T ] 1 0 Ju n 20 09 JACOBI–TRUDY FORMULA FOR GENERALISED SCHUR POLYNOMIALS A.N. SERGEEV AND A.P. VESELOV Abstract. Jacobi–Trudy formula for a generalisation of Schur polynomials related to any sequence of orthogonal polynomials in one variable is given. As a corollary we have Giambelli formula for generalised Schur polynomials.
متن کاملApplications of Minor-Summation Formula II. Pfaffians and Schur Polynomials
The purpose of this paper is, to establish, by extensive use of the minor summation formula of pfaffians exploited in (Ishikawa, Okada, and Wakayama, J. Algebra 183, 193 216) certain new generating functions involving Schur polynomials which have a product representation. This generating function gives an extension of the Littlewood formula. During the course of the proof we develop some techni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Moscow Mathematical Journal
سال: 2014
ISSN: 1609-3321,1609-4514
DOI: 10.17323/1609-4514-2014-14-1-161-168